How to create a Sudoku puzzle in Python
How to create a Sudoku puzzle in Python
You can generate a random sudoku solution board where all numbers are filled in and then remove some of them to create the puzzle. This will ensure that the puzzle always has a solution. Making sure that it has exactly one solution is a bit more challenging (hint: you must leave at least 17 numbers for a 9×9 sudoku)
The algorithm below will generate a NxN random sudoku solution board instantly for N < 1000.
base = 3
side = base*base
# pattern for a baseline valid solution
def pattern(r,c): return (base*(r%base)+r//base+c)%side
# randomize rows, columns and numbers (of valid base pattern)
from random import sample
def shuffle(s): return sample(s,len(s))
rBase = range(base)
rows = [ g*base + r for g in shuffle(rBase) for r in shuffle(rBase) ]
cols = [ g*base + c for g in shuffle(rBase) for c in shuffle(rBase) ]
nums = shuffle(range(1,base*base+1))
# produce board using randomized baseline pattern
board = [ [nums[pattern(r,c)] for c in cols] for r in rows ]
for line in board: print(line)
[6, 2, 5, 8, 4, 3, 7, 9, 1]
[7, 9, 1, 2, 6, 5, 4, 8, 3]
[4, 8, 3, 9, 7, 1, 6, 2, 5]
[8, 1, 4, 5, 9, 7, 2, 3, 6]
[2, 3, 6, 1, 8, 4, 9, 5, 7]
[9, 5, 7, 3, 2, 6, 8, 1, 4]
[5, 6, 9, 4, 3, 2, 1, 7, 8]
[3, 4, 2, 7, 1, 8, 5, 6, 9]
[1, 7, 8, 6, 5, 9, 3, 4, 2]
You can then remove some of the numbers from the sudoku solution to create the puzzle:
squares = side*side
empties = squares * 3//4
for p in sample(range(squares),empties):
board[p//side][p%side] = 0
numSize = len(str(side))
for line in board: print([+ .join(f{n or .:{numSize}} for n in line)+])
[6 . . . . 3 . . 1]
[. 9 . . . . . . 3]
[4 . 3 . . . 6 . .]
[. . . 5 9 . 2 . 6]
[. . . . . . . . .]
[. . 7 . . . . . 4]
[. . . . . . 1 7 .]
[. . 2 . . 8 . . .]
[. . 8 . . . . 4 2]
For 4×4 up to 36×36 puzzles, you could make a nicer print of the board like this:
def expandLine(line):
return line[0]+line[5:9].join([line[1:5]*(base-1)]*base)+line[9:13]
line0 = expandLine(╔═══╤═══╦═══╗)
line1 = expandLine(║ . │ . ║ . ║)
line2 = expandLine(╟───┼───╫───╢)
line3 = expandLine(╠═══╪═══╬═══╣)
line4 = expandLine(╚═══╧═══╩═══╝)
symbol = 1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
nums = [ []+[symbol[n] for n in row] for row in board ]
print(line0)
for r in range(1,side+1):
print( .join(n+s for n,s in zip(nums[r-1],line1.split(.))) )
print([line2,line3,line4][(r%side==0)+(r%base==0)])
╔═══╤═══╤═══╦═══╤═══╤═══╦═══╤═══╤═══╗
║ 6 │ │ ║ │ │ 3 ║ │ │ 1 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ 9 │ ║ │ │ ║ │ │ 3 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ 4 │ │ 3 ║ │ │ ║ 6 │ │ ║
╠═══╪═══╪═══╬═══╪═══╪═══╬═══╪═══╪═══╣
║ │ │ ║ 5 │ 9 │ ║ 2 │ │ 6 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ │ ║ │ │ ║ │ │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ │ 7 ║ │ │ ║ │ │ 4 ║
╠═══╪═══╪═══╬═══╪═══╪═══╬═══╪═══╪═══╣
║ │ │ ║ │ │ ║ 1 │ 7 │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ │ 2 ║ │ │ 8 ║ │ │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ │ 8 ║ │ │ ║ │ 4 │ 2 ║
╚═══╧═══╧═══╩═══╧═══╧═══╩═══╧═══╧═══╝
[EDIT]
Here are some additional information on the shuffling process …
Shuffling rows is broken down in groups of 3 rows. It is ok to swap groups as a whole but we cant swap rows across groups without breaking the integrity of the blocks. (the same reasoning applies to columns)
For example:
0 [6, 2, 5, 8, 4, 3, 7, 9, 1] -|
1 [7, 9, 1, 2, 6, 5, 4, 8, 3] | group 0 -| -| r in shuffle(rBase)
2 [4, 8, 3, 9, 7, 1, 6, 2, 5] / | -|
|
3 [8, 1, 4, 5, 9, 7, 2, 3, 6] | -|
4 [2, 3, 6, 1, 8, 4, 9, 5, 7] | group 1 -| * -| r in shuffle(rBase)
5 [9, 5, 7, 3, 2, 6, 8, 1, 4] / | -|
|
6 [5, 6, 9, 4, 3, 2, 1, 7, 8] | -|
7 [3, 4, 2, 7, 1, 8, 5, 6, 9] | group 2 -| -| r in shuffle(rBase)
8 [1, 7, 8, 6, 5, 9, 3, 4, 2] / -|
* for g in shuffle(rBase)
We can swap groups 0,1,2 by moving all 3 of their rows at the same time:
3 [8, 1, 4, 5, 9, 7, 2, 3, 6] | -|
4 [2, 3, 6, 1, 8, 4, 9, 5, 7] | group 1 -| -| r in shuffle(rBase)
5 [9, 5, 7, 3, 2, 6, 8, 1, 4] / | -|
|
6 [5, 6, 9, 4, 3, 2, 1, 7, 8] | -|
7 [3, 4, 2, 7, 1, 8, 5, 6, 9] | group 2 -| * -| r in shuffle(rBase)
8 [1, 7, 8, 6, 5, 9, 3, 4, 2] / -|
|
0 [6, 2, 5, 8, 4, 3, 7, 9, 1] | -|
1 [7, 9, 1, 2, 6, 5, 4, 8, 3] | group 0 -| -| r in shuffle(rBase)
2 [4, 8, 3, 9, 7, 1, 6, 2, 5] / | -|
* for g in shuffle(rBase)
And we can swap between the 3 rows of a group (e.g. 3,4,5) …
0 [6, 2, 5, 8, 4, 3, 7, 9, 1] -|
1 [7, 9, 1, 2, 6, 5, 4, 8, 3] | group 0 -| -| r in shuffle(rBase)
2 [4, 8, 3, 9, 7, 1, 6, 2, 5] / | -|
|
5 [9, 5, 7, 3, 2, 6, 8, 1, 4] | -|
4 [2, 3, 6, 1, 8, 4, 9, 5, 7] | group 1 -| * -| r in shuffle(rBase)
3 [8, 1, 4, 5, 9, 7, 2, 3, 6] / | -|
|
6 [5, 6, 9, 4, 3, 2, 1, 7, 8] | -|
7 [3, 4, 2, 7, 1, 8, 5, 6, 9] | group 2 -| -| r in shuffle(rBase)
8 [1, 7, 8, 6, 5, 9, 3, 4, 2] / -|
* for g in shuffle(rBase)
We CANNOT swap rows across groups (e.g. 1 <–> 3):
0 [6, 2, 5, 8, 4, 3, 7, 9, 1] -|
3 [8, 1, 4, 5, 9, 7, 2, 3, 6] | group 0 -| -| r in shuffle(rBase)
2 [4, 8, 3, 9, 7, 1, 6, 2, 5] / | -|
|
1 [7, 9, 1, 2, 6, 5, 4, 8, 3] | -|
4 [2, 3, 6, 1, 8, 4, 9, 5, 7] | group 1 -| * -| r in shuffle(rBase)
5 [9, 5, 7, 3, 2, 6, 8, 1, 4] / | -|
|
6 [5, 6, 9, 4, 3, 2, 1, 7, 8] | -|
7 [3, 4, 2, 7, 1, 8, 5, 6, 9] | group 2 -| -| r in shuffle(rBase)
8 [1, 7, 8, 6, 5, 9, 3, 4, 2] / -|
* for g in shuffle(rBase)
See the duplicate 8 in the top left block, duplicate 7 below that, etc.
Single solution puzzle
In order to generate a sudoku puzzle with only one solution you will need a solver function that can tell you if there are more than one solution. The strategy I would suggest is to start with 75% (or more) of the numbers removed, then check that there is only one solution. If there is more than one solution, put back a number and check again. You can put back a number at a random position or select a position where the solutions differ (which will converge faster to a single solution puzzle)
First write a solver that will generate all solutions that it finds (ideally as a generator because we only need the first 2). Heres a simple one:
def shortSudokuSolve(board):
size = len(board)
block = int(size**0.5)
board = [n for row in board for n in row ]
span = { (n,p): { (g,n) for g in (n>0)*[p//size, size+p%size, 2*size+p%size//block+p//size//block*block] }
for p in range(size*size) for n in range(size+1) }
empties = [i for i,n in enumerate(board) if n==0 ]
used = set().union(*(span[n,p] for p,n in enumerate(board) if n))
empty = 0
while empty>=0 and empty<len(empties):
pos = empties[empty]
used -= span[board[pos],pos]
board[pos] = next((n for n in range(board[pos]+1,size+1) if not span[n,pos]&used),0)
used |= span[board[pos],pos]
empty += 1 if board[pos] else -1
if empty == len(empties):
solution = [board[r:r+size] for r in range(0,size*size,size)]
yield solution
empty -= 1
Starting with a solution
variable with all numbers present and board
variable containing the puzzle with 3/4 of numbers cleared, you can add numbers back to the board until there is only one way to solve it:
solution=[[9, 5, 3, 1, 6, 7, 4, 2, 8],
[4, 2, 8, 3, 5, 9, 7, 6, 1],
[7, 6, 1, 8, 2, 4, 9, 5, 3],
[5, 8, 4, 9, 3, 6, 2, 1, 7],
[6, 3, 9, 7, 1, 2, 5, 8, 4],
[2, 1, 7, 4, 8, 5, 6, 3, 9],
[3, 4, 5, 6, 9, 1, 8, 7, 2],
[8, 7, 2, 5, 4, 3, 1, 9, 6],
[1, 9, 6, 2, 7, 8, 3, 4, 5]]
board=[ [0, 0, 0, 0, 0, 0, 0, 0, 8],
[0, 2, 0, 0, 5, 0, 7, 6, 0],
[0, 6, 0, 0, 0, 0, 0, 0, 3],
[5, 0, 0, 0, 0, 0, 2, 0, 7],
[0, 3, 0, 0, 1, 0, 0, 0, 0],
[2, 0, 0, 4, 0, 0, 0, 3, 0],
[0, 0, 0, 6, 0, 0, 0, 0, 0],
[8, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 2, 7, 0, 0, 4, 0]]
import random
from itertools import islice
while True:
solved = [*islice(shortSudokuSolve(board),2)]
if len(solved)==1:break
diffPos = [(r,c) for r in range(9) for c in range(9)
if solved[0][r][c] != solved[1][r][c] ]
r,c = random.choice(diffPos)
board[r][c] = solution[r][c]
output:
╔═══╤═══╤═══╦═══╤═══╤═══╦═══╤═══╤═══╗
║ │ │ ║ │ │ 7 ║ │ │ 8 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ 2 │ ║ │ 5 │ ║ 7 │ 6 │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ 6 │ ║ 8 │ │ 4 ║ │ │ 3 ║
╠═══╪═══╪═══╬═══╪═══╪═══╬═══╪═══╪═══╣
║ 5 │ │ ║ │ │ ║ 2 │ │ 7 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ │ 3 │ ║ │ 1 │ ║ │ │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ 2 │ │ ║ 4 │ │ ║ │ 3 │ ║
╠═══╪═══╪═══╬═══╪═══╪═══╬═══╪═══╪═══╣
║ │ 4 │ ║ 6 │ │ ║ │ │ ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ 8 │ │ ║ │ │ ║ 1 │ │ 6 ║
╟───┼───┼───╫───┼───┼───╫───┼───┼───╢
║ 1 │ │ ║ 2 │ 7 │ ║ │ 4 │ ║
╚═══╧═══╧═══╩═══╧═══╧═══╩═══╧═══╧═══╝
Note that this will work in a reasonable time for 9×9 sudoku boards but you will need a much better/faster solver function for larger boards
This should work.
def sudoku(size):
import time
start_time=time.time()
import sys
import random as rn
mydict = {}
n = 0
print --started calculating--
while len(mydict) < 9:
n += 1
x = range(1, size+1)
testlist = rn.sample(x, len(x))
isgood = True
for dictid,savedlist in mydict.items():
if isgood == False:
break
for v in savedlist:
if testlist[savedlist.index(v)] == v:
isgood = False
break
if isgood == True:
isgoodafterduplicatecheck = True
mod = len(mydict) % 3
dsavedlists = {}
dtestlists = {}
dcombindedlists = {}
for a in range(1,mod + 1):
savedlist = mydict[len(mydict) - a]
for v1 in savedlist:
modsavedlists = (savedlist.index(v1) / 3) % 3
dsavedlists[len(dsavedlists)] = [modsavedlists,v1]
for t1 in testlist:
modtestlists = (testlist.index(t1) / 3) % 3
dtestlists[len(dtestlists)] = [modtestlists,t1]
for k,v2 in dsavedlists.items():
dcombindedlists[len(dcombindedlists)] = v2
dcombindedlists[len(dcombindedlists)] = dtestlists[k]
vsave = 0
lst1 = []
for k, vx in dcombindedlists.items():
vnew = vx[0]
if not vnew == vsave:
lst1 = []
lst1.append(vx[1])
else:
if vx[1] in lst1:
isgoodafterduplicatecheck = False
break
else:
lst1.append(vx[1])
vsave = vnew
if isgoodafterduplicatecheck == True:
mydict[len(mydict)] = testlist
print success found, len(mydict), row
print --finished calculating--
total_time = time.time()-start_time
return mydict, n, total_time
return_dict, total_tries, amt_of_time = sudoku(9)
print
print --printing output--
for n,v in return_dict.items():
print n,v
print process took,total_tries,tries in, round(amt_of_time,2), secs
print -------------------
How to create a Sudoku puzzle in Python
If your goal is to create 9 x 9 Sudoku, then why not a simpler program?
Works on any of n^2 x n^2 (boards) in poly-time. To create a puzzle, you may have to remove elements manually. Guaranteeing one solution requires some backtracking. Poly-time is what you want for larger n^2 x n^2 Sudoku Latin-Squares.
#Provide a list of non-repeating n-elements to output a valid sudoku grid.
#this code runs on python3
print(enter with [1,2,3...] brackets)
tup = input()[1:-1].split(,)
#Input required to map out valid n x m or n^2 x n^2 Sudoku Grid
x = input(Enter mapping valid Sudoku eg. 3 for 9 x 9:)
e = input(Enter 9 for 9 x 9 ...12 for 12 x 12:)
f = input(Enter 3 if its a 9 x 9 ... n^2 x n^2:)
x = int(x)
e = int(e)
f = int(f)
#Manipulation of Elements to prepare valid grid
squares = []
for i in range(len(tup)):
squares.append(tup[i:] + tup[:i])
#Everything below here is just printing
for s in range(x):
for d in range(0,e,f):
for si in range(s,e,f):
for li in range(d,d+f):
print(squares[si][li], end = )
print()
#Remember that if you want
#to create a single board of n^2 x n^2
#you need to edit the below
#for a valid grid
#for example
#a 9 x 9
#would be a 3 x 3
#and so on.
No repeating elements!
For grids larger than 9 x 9 please use additonal brackets for readablity. eg. [[01],[02],[03],….]
Also, please remember that you need to know multiplication to output a properly mapped n^2 x n^2. For example, a 25 x 25
should be a 5 x 5 for the inputs as follows
For x, x = 5
For e, e = 25
for f, f = 5
Also, I had a buddy who helped me convert my algorithm into this python code for my amateur Sudoku project. Thanks to that Reddit user.
By the way, its actually O(m^2) time.
Proof
Thank you Reddit buddy for the help.